
NASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB T LOZANO-PEREZ ET AL RPR 85 Al-M-842

UNCLASSIFIED NOOOt4-8i-K-8494 F/6 9/2 NLEEEEEEEEEEII
EEEEEEIIIIIIE



'I-I

Li

. 'S.

.. -132

II 
o

II!W Iim F ; _.,
1111111I 20=

1.25 1.

MICROCOPY RESOLUTION TEST CHART
NA-NAL BUREAJ Of STANDARDS 1963 A

.- ,.

".'-'" G

".'.-%IF
,,, .: -,,:I-

4 
J



F ~MASSACI IUSETTS I NSTITUT'E OF TECH NOLOGY
AR'LTIFlICLAL INTFIAJICENCH LABI3U''ORY

*A. L. Memro No. 8412 April, 1985

in An Approach to Automatic Robot Programming

Tonia's Lozano-116ezt
I Rodniey A. Brooks-

* ,-,

Al .~r~t. !' tis paper we proposeaH" architecture for a new task-level system,
.,hich TWAI. Task-level programming attempts to simplify the robot
progr,-,nlding process by requiring that the user specify only goals for the physical
relationships amrong objects, rather than the motions needed to achieve those
guals. A Cask. level specification is meant to be completely robot independent; no
po~sitions or pa.ths dhat depend on the robot geometry or kinematics are specified
by tho user. -~e-*&two goals for this paper. The first is to presezt a more
111fi~ treatment of some indijvidIual pieces of research in task planning, whose
rolaionhAip ha-s riot previously been described. Trhe second is to providle a new
lrarne-'work for l'url her rc!search in task- pla ning., This is a slightly mnodified version
of a paper that_anpe&axed_ in. Piocoe4ifWe-olid Mwodeling by Computers: from

16;oy o Applications, Research laboratories Symposium' Series, sponsored by
General Mkotors, Warrein, Michigan, September 1983

S Acknowledgements.,. T1his report rescrarc do at the Artificial

Eel nteiige!ce Iaory of the Maissachusetts Institute of Technology. Support
6_Ji for tOw Liboratorv's Artificial Intelligence research is provided in part by the Office
L4 of. N4a'al R~esearch wnder Olice of Naval Research contract N004 1 -8.1 -K 04941 and

___ in palrL by the Advancotd Research P'rojects A~gency under C0llice of Naval Research
conrcts N00014-SO C 00505 and .1OII-82- K--0334. ~hi enapoe

fCr T .r+i and sale; its
(M- *''.J(+JhIVL s n~ieOf 'lCJTehology-

*8~091305
U0 I

%4



UNC.LASSIFIED

A READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I EPORT NuBE GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMSER

AIM 842 D- ly 6
[4 TIT LE rartd S.bttlI.) S. TYPE OF REPORT A PERIOD COVERED

An Approach to Automatic Programming At-Memo

S. PIERoRmING ORG. REPORT NUMBER

7, AIJT.4OR11(sj S. CONTRACT OR GRANT NUMUER(e)

N00014-81-K-0494
Tomas Lozano-Perez and N00014-80-C-0505
Rodney A. Brooks N00014-82-K-0334

9PERFORMING~ ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Artificial Intelligence Lab.
545 Technology SQ.
Cambridge, MA 02139 ____________ ______________

11 CONTROLLING OFFICE NAME AND DORESS 12. REPORT DATE

Advanced Research Projects Agency April,1985
1400 Wilson Blvd. 13. NUMDER OFPAGES

Arlington, VA 22209 35
I4 MONITORING AGENCY NAME & AOORESS(If different from ConI,.Iiinj Office) 1S. SECURITY CLASS. (of this eotn)

Office of Naval Research Unclassified
Information Systems
Arlington, VA 22217 So.OCL EDUIEIAIN ONRDN

16 OISTRIOUTION STATEMENT (of this Report)

Distribution is unlimited

17. OISTRIUUTION STATEMENT (of life. abstract eted In &lack 20, it different hae Report)

Ill. SUPPLEMENTARY NOTES

None

IS. KEY WORDS (Continue on, reverse side if neessary mdl Identify by block ainxe.)

Robotics
Task Planning
Robot Programming

* 20. ABISTRACT (Contine an row~ff ol d. It necessary mid fdewtf&g by block numb")

In this paper we propose an architecture for a new task-level system,
which we call TWAIN. Task-level programming attempts to simplify the robot
programming process by requiring that the user specify only goals for the
physical relationships among objects, rather than the motions needed to achieve
those goals. A task-level specification is meant to be completely robot indepen.

I' dent; no positions or paths that depend on the robot geometry or kinematics
are specified by the user. We have two goals for this paper. The first is

D D) I JOA, 1473 EDITION OF I NOV 61 IS O6SOLETE UNCLASS IF IED
S/N 0:01-01-660 1Ot

'a* 1SECURITY CLASSIFICATION OF THIS PAGE (When Does Entorec

-..-



* 20)
*in task planning, whose relationship has not been previously described. The
* second is to provide a new framework for further research in task planning.

This is a slightly modified version of a paper that appeared in Proceedings
of Solid Modeling by Computers: from Theory to Applications, Research laboratories

* Symposium Series,sponsored by General Motors, Warren, Michigan, September,1983.

* Accession For

NTIS GRA&I
DTIC TAB

*Unhnnounced Q3
;.!3t ifioation

* Dijtribution/_

Availability Codes

Avail and/or
-Dist Special



1. Introduction

One of the earliest and most elusive goals of robotics has been the ability to
program manipulators at the level of task operations rather than that of individual
motions. What at first appeared to be a relatively simple problem was soon
discovered to have unsuspected depths. As a result, several proposals to develop
such a task-level robot programming system have not culminated in a working
system. Nevertheless attempts to implement the proposals hav; led to crisper
problem statements, better algorithms and, above all, they have provided a useful
framework for research. Over the past six or seven years, and partly in response
to difficulties encountered implementing these proposals, significant advances have
been made in the theory and practice of task-level programming. As a result of new
developments, the architecture of the proposed systems is no longer an adequate
framework for research.

In this paper we propose an architecture for a new task-level system, which we
call TWAIN. In contrast to earlier proposals, much of the theoretical underpinning
of TWAIN exists, and many of the components have been implemented and tested
as stand-alone systems in our laboratory. Although these components require
additional work, we believe they provide a solid basis for a new effort at integration.
We have two goals for this work. The first is to integrate some individual pieces
of research in task planning, whose relationship has not previously been explored.
The second is to provide a framework for further research in task-planning.

In this section, we provide an overview of task-level programming. Section 2
outlines the architecture of TWAIN. Section 3 through 5 describe, with the TWAIN
framework, approaches to the key task-planning modules of TWAIN.

1.1. Levels of Robot Programming

Most robots are programmed manually by moving them through a sequence
of desired positions, recording the internal joint coordinates corresponding to each
position, and then recording the operations, such as closing a gripper or activating
a welding gun, at those positions. The resulting program is a sequence of vectors of
joint coordinates and activation signals for external equipment. These programs are
executed by moving the robot through the specified sequence of joint coordinates
and issuing the indicated signals. This method of robot programming is known as
teaching by showing, or guiding.

Guiding is simple to use and to implement but subject to important limitations,
particularly in the use of sensors. Because guiding specifies a single execution
sequence for the robot, there can be no loops, conditionals, or computations. In some
applications, such as spot welding, painting, and the handling of simple materials,
this is enough. To do other applications, including mechanical assembly and
inspection, the robot must respond to sensory input, data retrieval, or computation.
This type of programming requires the capabilities of a general-purpose computer
programming language.

2

........................................................... .....



Robot-level languages are traditional computer programming languages that
have been extended with commands to access sensors and to specify robot motions.
Data from external sensors, such as vision and force, may be used to modify the
robot's motions, enabling the robot to operate with greater uncertainty in the
position of external objects, thereby increasing their range of application. The key
disadvantage of robot-level programming languages, relative to guiding, is that
they require the robot programmer to be expert in computer programming and in
the design of sensor-based motion strategies.

Task-level programming simplifies the robot programming process by requiring
that the user specify goals for the physical relationships among objects, rather than
the motions of the robot needed to achieve those goals. The task-level specification
is robot independent, in that no position or path that depends on the robot
geometry or kinematics is specified by the user. Because task-level programming
systems require complete geometric models of the environment and of the robot as
input, they are also referred to as world-modeling systems.

Task-level programming is one of the earliest and most elusive goals of
Robotics Science. What at first appeared to be a relatively simple problem was soon
discovered to have unsuspected depths. As a result, several attempts to develop
task-level robot programming systems have not culminated in working systems.
Nevertheless, attempts to implement the proposed systems have led to crisper
problem statements, better algorithms, and useful frameworks for research. It is
partly a result of these signifcant advances in the theory and practice of task-level
robot programming that we propose to develop a new task-level system.

1.2. Basic problems in task planning

In task-level programming, the task planner converts the user's specification
of a task into a robot-level program to carry out the task1 . The main role of the
task planner is to plan the robot-specific motion and sensing commands necessary
to achieve the task.

C ,nsider a simple block-stacking example (figure 1). The task can be specified
as follows:

PLACE A SUCH THAT (A.4 AGAINST TABLE) AND
(A.1 AGAINST F.1) AND (A.2 AGAINST F.2)

PLACE B SUCH THAT (B.4 AGAINST A.3) AND
(A.1 COPLANAR B.1) AND (A.2 COPLANAR B.2)

In the absence of positioning errors in the manipulator or in our knowledge of the
position of parts, this task could be accomplished with the following program:

'We ;qsume that the input description of the task completely slwcifirs the sequence of assembly.
Alternatively, atiother program called an assembly planner produces such a description from the
user's description.

re3

............ . . ...................... . . . . ..



VI

A (side)

iF

"F

N [j (top)
Figure 1. A block-stacking example.

1. OPEN-FINGERS TO <width of A + epsilon>
2. MOVE TO <location of grasp on A> VIA <path>
3. CLOSE-FINGERS TO <width of A - epsilon>
4. MOVE TO <location at F> VIA <path>
S. OPEN-FINGERS TO <width of B + epsilon>
6. MOVE TO <location of grasp on B> VIA <path>
7. CLOSE-FINGERS TO <width of B - epsilon>

8. MOVE TO <location on A> VIA <path>
9. OPEN-FINGERS TO <width of B + epsilon>

To generate this program, the task planner chooses positions for objects initially in
the workspace, determines how new objects will be fed into the workspace, picks
grasp points on parts, and finds paths that avoid collisions.. These problems are
not the only ones that face a task planner. In practice, this simple program fails
to achieve the desired goals because of the presence of errors in the robot control
system and in the system's knowledge of the location of the parts. The use of
sensing can, in many cases, overcome these problems, but this requires that the
task planner decide what kind of sensing is useful and how to combine it with
the appropriate motions. In fact, dealing with uncertainty permeates all c" task
planning.

In summary, to convert a task-level specification to a robot-level specification,
a realistic task planner must solve the following problems:

Parts feeding - The planner must choose how to introduce each of the parts
required for the assembly into the workspace in ways that maximize speed and
reliability in acquiring the parts. In the example in figure 1, the type of feeder

S -- for A and B must be determined.

. Layout - The planner must choose where in the workspace each operation

4



is to take place in ways that minimize sensing and positioning error as well

as reduce the time for the complete assembly. In the example in figure 1, the

location of F and of the feeders for A and B must be chosen.

* Fizturing - The planner must choose jigs and fixtures to hold the parts to

the required accuracy under the forces generated by assembly motions. In the
example in figure 1, F serves the function of a fixture; no further fixturing is

needed.

* Fine motion -- The planner must choose a strategy of sensing and motion

that guarantees that parts-mating operations will be reliable despite errors in

control and sensing. In the example in figure 1, strategies must be chosen that

guarantee that A reaches the corner of F and that B is aligned with A.

. Grasping - The planner must choose how to grasp each part so the grasp

is stable, avoiding collisions while grasping or while placing the part at its
destination. In the example, the planner must ensure that the grasp points on

A and B are stable, enabling the assembly operations to take place, and that

the grasping motions do not introduce too much error in position.

* Gross motion -- The planner must choose efficient collision-free paths for the

manipulator and the parts it carries. In the example in figure 1, the path
taking A from the feeder to near F and taking B from the feeder to above A
is chosen to avoid collisions of the manipulator with F and the feeder (even in

thi presence of position control error).

One possible program for the block-stacking task (taking into account the
likelihood of errors) has the following structure:

1. OPEN-FINGERS TO <width>

2. MOVE TO <location of grasp on A> VIA <path>

3. CLOSE-FING2RS TO <width>
4. MOVE TO <approach location near F> VIA <path>

5. COMPLIANT-MOVE ALONG <direction> UNTIL <contact with F.1 & F.2>

6. JMPLIANT-MOVE ALONG <direction> UNTIL <contact with TABLE>
7. OPEN-FINGERS TO <width>

8. VISION-LOCATE B NEAR <expected location of B>
9. OPEN-FINGERS TO <width>

10. MOVE TO <location of grasp on B> VIA <path>
11. CLOSE-FINGERS TO <width>

12. VISION-LOCATE B NEAR <expected location of B in fingers>

13. MOVE TO <approach location near B> VIA <path>

14. COMPLIANT-MOVE ALONG <direction> UNTIL <contact with A.3>

Note that a simple task-level description leads to a complex robot-level program

because of the presence of positioning errors and uncertainty. In fact, this program -

is inadequate for the task because it does not take into account the likelihood

that some operation will fail due to unexpected events. No program ever handles

5

: :: : . :: ""-i:-:: :..-......:...-..:....--....-----.-......-..-...-.-..-...-..........-..-.--.-..-.-.....,..... -..-...



all possible eventualities, but the addition of sensing significantly increaies the
reliability of the operation, usually at the expense of speed. This example points
out the difficulty of robot-level programming and the potential value of ta,;k-level
robot programming.

Many of the decisions that had to be made in synthesizing the example program
arc not obvious from a first glance at the program. These complex decisions manifest
themselves only in the numeric values of positions, that is, in the positions of feeders

and grasp points, the width of finger openings, directions of compliant motions,
and the paths for positioning motions. The basic program structure itself - the
need fur the compliant motions in steps 5 and 6 and the sensing operation at steps
8 and 12 - is based on numerical estimates of errors in sensing and control (partly
based on the result of previous decisions). These decisions are tightly inter-related
and propagate across what, on the surface, appear to be independent operations.
The :hoice of grasp points affects the assembly operations, the need for sensing,
and the choice of paths.

"he design of a planner capable of transforming a task-level specification into
a detailed robot program is complex. Our approach to the design is based on a set
of key ideas and methods:

" "he use of a small number of powerful planning modules to identify the range
of possible values of the parameters needed for grasping, gross motion, and
fine motioii.

0 The use constraint propagation to choose feasible values for parameters that
affect more than one operation.

" The use of skeleton programs to indicate stereotyped sequences of operations
required to execute common tasks.

* The use of configuration space to reason about legal robot motions for grasping,
fine nkotion, and gross motion.

1.3. Hierarchical decomposition and robot programming

Decomposition into independent sub-problems, especially hierarchical decom-
position, is one of the most common and powerful of conceptual tools for problem-
solving. It is no surprise that it forms the foundation of almost all programming
methodologies. St ructured programming, for example, is essentially an endorsement
of hierarchical decompo : )n in programs. More recent developments in program-
ming languages, such as data encapsulation, apply this approach for data structures.
Of corse, even the simplest programming tasks are not completely decomposable;
side-eftects, such as modification of databases, propagate dependencies across opera-
tions. The driving force behind most programming methodologies is to minimize
these dependencies.

It is natural to attempt to apply methodologies based on hierarchical

decomposition to robot programming and control. However, the fundamental
character of robot operations limits the scope of such decomposition. The key
difficulties are error and geometry, both of which are non-local. The choice of

6

--- A--



grasp point on a part, for example, determines what motions of the hand are
required to position the part. The choice of grasp point, in turn, is determined
by subsequent assembly operations; for example, a finger cannot be on a surface
that is to be against another surface. Nor can the axis between the fingers be
perpendicular to large applied forces because only friction is holding the object along
that direction. Similarly, the existence of a path to a destination might depend on
how the part is held in the hand. Finally, each operation makes certain assumptions
about accuracy in locations and shape which affect subsequent operations. These
dependencies conspire to make robot operations appear monolithic; one often
concludes that everything must be decided before anything at all is decided.

The use of sensing and compliance increases the class of situations in which
particular operations will succeed and, thereby, reduces inter-dependence among
operations. In the extreme case, each operation can sense the complete current
environment and decide independently which method is adequate to perform its
task. This is extremely wasteful even assuming that the sensing is free; it will
require frequent re-grasping, for example. In general, the low-level decisions made
in carrying out each task-level step (layout, grasping, paths, and sensing) influence
the decisions that need to be made for steps before and after this one [Brooks
82, Taylor 76]. Because of this, TWAIN is based on a two-level approach to task
planning based on propagating constraints on physical quantities.

The TWAIN approach to robot program synthesis starts by expanding the task-
level description into a skeleton program. This skeleton program makes reference to
quantities provided in the input, quantities that must be chosen by the system, and
error quantities on which only bounds are available. Symbolic algebraic constraints
are used to make explicit the interactions among the quantities across program
steps. The goal of the system is to make few arbitrary decisions, but instead to
exploit the mutual constraints among steps to force decisions. Each planning module
restricts the values of variables in the skeleton plan in addition to determining the
actual operations needed to achieve a step in the program. The planner propagates
the restrictions on variables across operations: forwards from constraints on input
quai .,ties to constraints on output quantities and backwards from constraints on
outl ut quantities to constraints on input quantities [Brooks 82].

1.4. Modeling Requirements

Task-level planners require a complete world model and a complete task
specification.

1.4.1. The World Model

The legal motions of an object are constrained by the presence of other objects
in the environment, and the form of the constraints depends in detail on the shapes
of the objects. Therefore, a task planner needs complete geometric descriptions
of objects. There are additional constraints on motion imposed by the kinematic
structure of the robot itself. If the robot is turning a crank or opening a valve,
then the kinematics of the crank and the valve impose additional restrictions

7



on the robot's motion. The kinematic models provide the task planner with the
information required to plan manipulator motions that are consistent with external
constraints. Note that as a result of the robot's operation, new linkages inay be
created and old linkages destroyed; the task-planner must be appraised of the P
changes.

In planning robot operations, many of the physical characteristics of objects
play important roles. The mass and inertia of parts, for example, determine how
fast they can be moved or how much force can be applied to them before they
fall over. Similarly, the coefficient of friction between a peg and a hole affects the
jamring conditions during insertion. Likewise the physical constants of the robot
links are used in the dynamics computation and in the control of the robot.

"he feasible operations of a robot are not sufficiently characterized by its
geom2trical, kinematical, and physical descriptions. One important additional
aspect of a robot system is its sensing capabilities of touch, force, and vision. For
task-)lanning purposes, vision enables obtaining the configuration of an object to
some specified accuracy at execution time; force sensing allows the use of compliant
motions; touch information serves in both capacities. In addition to sensing, there
are many individual characteristics of manipulators that must be described; velocity P
and acceleration bounds, positioning accuracy of each of the joints, and workspace
bounds are examples.

1.4.2. The Task Model

A model state is given by the configurations of all the objects in the 3
environment; tasks are actually defined by sequences of states of the world model or
transformations of the states. The level of detail in the sequence needed to specify
a task depends on the capabilities of the task planner.

The configurations of objects needed to specify a model state can be provided
explicitly, as offsets and Euler angles for rigid bodies and as joint parameters
for linkages, but this type of specification is cumbersome and error prone. Three
alternative methods for specifying configurations have been developed:

" Use a light-pen to position CAD models of the objects at the desired
configurations.

S ;se the robot itself to specify robot configurations and to locate features of
the objects [Grossman and Taylor 78].

" Use symbolic spatial relationships among object features to constrain the
configuratiors of objects, as in Facej AGAINST Face2 [Popplestone, Ambler,
and lBellos 78.

One advantage of using symbolic spatial relationships is that the configurations
they denote are not limited to the accuracy of a light-pen or a manipulator.
Another advantage of this method is that families of configurations, such as those
on a urface or along an edge, can be expressed. Inasmuch as these relationships are
easy to interpret by a human, they are easy to specify and modify. The principal
disadvantage of using symbolic spatial relationships is that they do not specify

8

. .•. .: . : . . 7



configurations directly; they must be converted into numbers or equations before
they can be used. •

Recall that model states are simply sets of configurations. If task specifications

were simply sequences of models, then given a method such as symbolic spatial
relationships for specifying configurations, we should be able to specify tasks.
This approach has several important limitations. One limitation is that a set
of configurations may overspecify a state, for example, a round pin in a round
hole. This problem can be solved by treating the symbolic spatial relationships
themselves as specifying the state, since these relationships can express families
of configurations. A more fundamental limitation is that geometric and kinematic
models of an operation's final state are not always a complete specification of the
desired operation. One example of this is the need to specify how hard to tighten
a bolt during an assembly. In general, a complete description of a task may need
to include parameters of the operations used to reach one task state from another.

The alternative to task specification by a sequence of model states is specification

by a sequence of operations. Thus, instead of building a model of an object in its
desired configuration, we can describe the operation by which it can be achieved.
The description should still be object-oriented, not robot-oriented; for example,
the target torque for tightening a bolt should be specified relative to the bolt and
not relative to the manipulator. Most operations also include a goal statement
involving spatial relationships between objects. The spatial relationships given in
the goal specification not only describe configurations; they indicate the physical
relationships between objects that should be achieved by the operation. When we say
that two surfaces should be AGAINST each other, for example, the robot should

perform a compliant motion that moves until the contact between the surfaces is
actually detected. This is quite different from computing the position where the
contact should have occurred - assuming perfect knowledge - and commanding
the robot to move to that position. For these reasons, existing proposals for
task-level programming languages have adopted an operation-centered approach to
task specification [Lieberman and Wesley 77, Lozano-P6rez 76]. TWAIN also assumes
ti, s ;m of input.

1.5. Previous work

A number of task-level language systems have been proposed, but no complete
system has been implemented. In this section we briefly review these systems.

The Stanford Hand-Eye system [Feldman, et al. 71] was the first of the

task-level system proposals. A subset of this proposal was implemented [Paul 72] in
a program called Move-Instance that chose stable grasping positions on polyhedra
and planned a motion to approach and move the object. The planning did not
involve obstacle avoidance (except for the table surface) or the planning of sensory
operations.

AL [Finkel, et al. 74], as initially defined, called for the ability to specify models

in AL and to allow specification of operations in terms of these models. This has
been the subject of some research [Binford 79, Taylor 76], but the results have not

• .. ..: .. . . • .... ..: . : o ... - : . . : .. ..9



~L Li

Figir 2. Similar peg-in-hole tasks that reqtuire different strategies.

been incorporated into the existing AL system. Some additional work within the
context of Stanford's Acronym system IBrooks 81] has dealt with planning grasp
positions [Binford 791, but AL has been viewed as the target language rathe2r than
the user language.

Laylor 176] discusses an approach to the synthesis of sensor-based AL programs
from task-level specifications. Taylor's method rclies on representing prototypical

motion strategies for particular tasks as parameterized robot programs, known as
procedure skeietons. A skeleton has all the motions, error tests, and computations

needed to carry out a task, but many of the parameters needed to specify motions
and tests remain to be specified. The applicability of a particular skeleton to a
task depends on the presence of certain features in the model and the values
of parameters such as clearances and uncertainties. Choices among alternative
strategies for a single operation are made by first computing the values of a set of
parameters specific to the task, such as the magnitude of uncertainty region for the
peg in peg-in-hole insertion, and then using these parameters to choose the best, that
is fastest. stratep'. Having chosen a strategy, the planner computes the additional
parameters needed to specify the strategy motions, such as grasp positions and
approach positions. A program is produced by inserting these parameters into the
procedure skeleton that implements the chosen strategy.

Tavior's work on making planning decisions by manipulating constraints on
positions that explicitiy model error was significantly extended by Brooks 182). The
principal extension was the use of these symbolic constraints not only forward to
get error bounds but backward to restrict the choices on plan variables and to
introduce appropriate sensing into the program. This approach underlies much of
TWA N and is described in detail in Section 2.

The approach to strateg" synthesis based on procedure skeletons assumes that
task geometry for common sub-tasks is predictable and can be divided into a

-.. manageabie number of ciasses each requiring a different skeleton. This assumption

is needed because the sequence of motions in the skeleton will be consistent

10



"4

of the two-dimensional peg-in-hole problem in Figure 6(a) when the axes of the peg

and hole are constrained to be parallel. The basic step in the synthesis approach is

to identify ranges of configurations from where p can reach G by a single m )tion. 4

The directions of such motions can be represented as unit vectors, vi. For each vi,
we can compute all those configurations, Pi, such that a motion along vi from that

configuration would reach some point of G. We call this range of configurations

that can reach the goal by a single motion along a specified heading vector the

pre-irnage of the goal (for that vector). All we need do to guarantee that p reaches
G from any, point in any of the Pi is to use vi as the commanded velocity vector

for a damper.

The computation of pre-images must take into account the possibility of the
moving object sticking on a surface. In particular, assuming the motion is generated

by a damper (with B = bi), if the angle between the commanded velocity and the

normal of a surface is less than the friction angle (the arctangent of the coefficient
of friction) then the motion will stick on that surface.

If no pre-image of G contains the peg's current configuration, then we can apply
the same pre-image computation recursively using each of the existing pre-images
as a possible goal. Each pre-image of G, Pi, serves to define a new goal set. This

process is repeated until sonic pre-image contains some subset of the legal start
configurations. From the chain of pre-images we can construct a motion sequence.

One key problem in the synthesis method is to discover the sequence of I
command velocity vectors vi. Our approach is to narrow in on feasible values of vi
by progressive refinement. We start with the complete range of possible vi's and

remove from that range any values that can possibly lead to failure (by sticking

on a non-goal surface or by sliding away from the goal). At each step of the

algorithm, we compute the pre-image of the goal for the current range of vi's. The

pre-image for a range of commanded velocities is the intersection of the pre-images
for each of the velocities. These are the configurations guaranteed to reach the

goal for all the velocities in the range. If the pre-image includes feasible starting
configurations, then we have found a valid motion sequence, otherwise the current

range of velocities must be narrowed further.

Figure 7 illustrates the method on a simple two-dimensional block-in-corner
example. The directed graph shown there has nodes for each of the C-surfaces in
the task and one node representing free C-space (C). There is a link from nodes

m to n in the graph if some velocity in the current range may cause the robot to

move from some point in rn (which is not in n) to some point in n (which may be

at, the intersection of rm and n) without going through points in any other node.

We call this the reachabil'ty graph for that range of commanded velocities.

In the example, we start out with a range of commanded velocities including

any velocity that will move p from nearby points onto the goal G (we diagram

ranges of commanded velocities as sectors of a circle). The reachability graph for

this range of velocities is shown at the top of Figure 7. In this figure, we have

indic-ted those surfaces where the moving object may stick (using the electrical

ground symbol). The (potentially) sticking surfaces are those whose friction cones

21 ¢1



B D

Figure 6. Peg-in-hole: (a) original formulation (b) transformed to point problem.

Notice that D3 is wholly contained in set B, so if it is reached the gross motion
will have been successful. -.

Due to manipulator inaccuracies, straight-line motions will not necessarily be
achieved. The shaded regions, in figure 5, show all possible paths, demionstrating
that whatever motion actually occurs is guaranteed to be collision free.

3. Fine-Motion Synthesis

The problem of automatically synthesizing a fine motion from a geometric
description has received little attention in the literature. Previous approaches
were either based purely on skeletons [Taylor 76, Lozano-Pdrez 76) or on learning
strategies [Dufay and Latombe 83). In this section we outline an approach to 9..

automatic fine-motion synthesis initially described in JLozano-P6rez, Mason, and
Taylor 84] and further developed in [Mason 84, Erdmann 84). This approach is
based on the notion of a configuration space ILozano-Prez 81, 83, Brooks and
Lozano-Perez 83); see the Appendix for a brief introduction.

The fine-motion planner constructs a sequence of motions that guarantees that
some configuration from a specified range of goal configurations will be reached from
2-vwhere within a computed range of start configurations. Each element in the

mo on sequence is a guarded comvliant motion, in particular, a commanded velocity
vec..( for a generalized damper [Whitney 76], and a termination predicate. The
desired motion for a generalized damper is determined by the following relationship -

f= B(v - vo)

where f is the vector of forces acting on the moving object, v0 is the commanded
velocity vector, and v is the actual velocity vector. The effect of these compliant
motions is to slide on the C-surfaces (see the Appendix) derived from the obstacles.
When not in contact with a surface, the motion will be along the commanded
veiocity (within some velocity uncertainty). The motion terminates when the
associated predicate (a function of observed configuration, velocity, and elapsed
time) evaluates to true.

Consider the simple task of moving the point p from its initial configuration
to any one of the configurations in G (see Figure 6(b)). This is the C-space version

23



2

B i 2

Figure 5. Gross-motion planning.

c. Trajectory constraints

d. Error bounds;
Output:

a. Path (may be null)

b. Restricted start locations

c. Restricted goal locations.

The gross-motion planner determines collision-free motions for the manipulator
as it moves to the general location of an object in order to grasp it and as it
transfers an object within the workspace. The two classes of motions can be treated
by a single algorithm - the volume occupied by the hand changes depending on

what is grasped.

The planner is given initial and goal sets of configurations for the hand. It is
given bounds (perhaps parameterized) on the location error of any payload relative
to the hand, and on the position control error of the manipulator. Lastly it may
be given constraints which must be met by the trajectory. These are of two types.
They can limit the class of trajectories considered (e.g. it might be demanded
that the payload be reoriented only about a vertical axis), or they can provide a
criterion for choosing the trajectory from the considered class (e.g. minimization

of trajectory length, or of payload reorientation).

The planner produces a set of gross-manipulator motions (perhaps parameterized
in terms of plan variables) which guarantee motion of the hand or payload from
any point in the initial set of configurations to some point in the final set.

Figure 5 shows an example of gross-motion control for moving a point in two
dimensions (this might be the configuration space of some moving object with a
more interesting shape). The task is to move the point from any position in set A to
somewhere in set 11. Three commands are generated: "move to di", "move to d2"
and "move to d:" Each is a command to lower level servo routines to move in a
straight line to the desired point (using pure position control). Due to manipulator

inaccuracies the true destinations of the motion commands will lie in the error balls

D1, D,, and D:j respectively.

22

.. . . . -.- . . .. . . . .. .



error we can only specify the position of the point to be within some error ball and
the specified heading within some cone around v. The planner must pick the initial --

position and the direction of motion with these errors in mind.

In general, achieving a task will require several motions. For each of these
a region of initial locations (and corresponding motions) will be computed. The
planner returns each of these regions as well as the corresponding motions. These
regions can serve as alternative goals for the gross motion planner.

The fine-motion planner assumes it has a complete description of the
environment. In TWAIN, however, fine-motion planning is done before a final
layout of the environment is available. The planner computes a guard volume where
the introduction of another object would affect the planned strategy. These guard
volumes are used in the final layout phase.

2. Grasping
Input:

a. Pick up location of part

b. Put down destination of part

c. Grasp constraints

d. Error bounds;
Output:

a. Grasp configurations

b. Grasp motions

c. Guard volume.

The grasp planner is given as inputs the pick up and put down locations for
the part to be grasped (possibly in terms of plan variables). It is also given bounds
on the position error of the part at the pick up location. As in fine motion planning,
the planner may be given constraints on where the part should, or should not be
grasped.

he planner determines where the part should be grasped and the desired
orie,,Lauion of the hand relative to the surface. The planner also must determine a
sequence of motions that guarantees that the desired grasp configuration is reached
in the presence of errors in manipulator positioning and part location.

Figure 8 shows a simple example of grasp planning for a parallel jaw gripper.
Note that the choice of where to place the fingers depends not only on the part,
but also on the environment near the part at the initial and final locations. As
with fine motion planning, the grasp planner specifies a guard volume in which the
presence of objects would require pre-planning.

3. Gross Motion
Input:

a. Start locations

b. Goal locations

21



1. Gross Motion

2. Grasp

3. Bolt in hole

4. Ungrasp

5. Dead reckon vertical align (i.e. stacking)

6. Catch-all synthesized fine motion

2.5. The planner modules in more detail

The three planning modules are briefly described here in general form. In
sections 3 through b of the proposal we refer to published work which describes
implementations of specializations of each of the module descriptions.

All modules have access to a current context world model, which has
specifications via geometric descriptions and algebraic constraints of all the parts
whose locations have been decided exactly or at least been constrained to some set
of possibilities.

1. Fine Motion
Input:

a. Initial locations of parts

b. Goal specification

c. Assembly constraints

d. Error bounds;
Output:

a. Compliant motion strategy

b. Legal initial locations for each motion

c. Guard volume.

The fine-motion planner is given as inputs the sets of possible initial locations
for the parts and a specification of the range of legal final configurations. It is also
given bounds on the errors in measuring the manipulator's position and the forces
acting on it, and bounds on the error in controlling the position and velocity of the
manipulator. Lastly, it may be given constraints on the motions, such constraints
might forbid hitting some surfaces or exceeding bounds on forces.

The planner determines compliant motions which ensure that the parts will
reach one of the final configurations if started from within the specified range of
initial locations. Typically the planning process will also place additional constraints
on the legal initial locations.

Figure 7 shows an example of fine-motion planning for a point in two dimensions.
This is actually the configuration space of a simple block-in-corner task (see the
Appendix). The task is to move the point p from its initial location to somewhere

in set G. A single compliant motion along the direction v from anywhere within
the shaded subset of A will reach some part of G. Note that due to manipulator

20

-:' .-'..." . -. . .. . .' . .. ,. -.. . . -..... ...-. . -. .- . . ..- . .--. . . ..-. .,-.. ..".- ,.-.-. " . 7.. , - :-"'': :,



which is trivially true,

-0.20 < B-POSITION- A-POSITION < 0.2 -:

and

nominal(B-POSITION) = nominal(A- POSITION),

while the propagation constraints are:

-0.05 < B-POSITION - A-RESULT-POSITION < 0.05

and
nominal(B- POSITION) = nominal(A-RESULT-POSITION).

The physical quantities are expanded into plan and uncertainty components using

A-POSITION = B-NOM + A-UNC

B-POSITION = B-NOM + B-UNC

A-RESULT-POSITION = B-NOM + A-RESULT-UNC

where the equalities in the constraints are used to substitute equal values. The
choice of using B-NOM as the nominal value for all three physical quantities is for
readability only - internally it is more likely to be something like G0487. The
constraint equalities have dictated that the peg should be nominally aligned with
the hole before the insertion. This is manifested by the peg and hole being given
the same nominal value in this plan step. The constraint propagator forces this to
be true by, for instance, specifying the nominal end point of the previous gross
motion that moves peg to the vicinity of the hole.

Now the applicability constraints reduce to:

-0.20 < B-UNC - A-UNC < 0.2

and the propagation constraints to:

-0.05 < B-UNC - A-RESULT-UNC < 0.05.

The methods developed in (Brooks 82] can be used to find ways of guaranteeing
that the applicability constraint are met. For instance it may be necessary to sense
th: .sition of the hole before a previous plan step of moving the peg to a nominal
poss ion above the hole. The sense step would give a new more accurate estimate
of the location of the hole giving a new B-NOM value and a better bound on the t

possible values for B-UNC.

Given a range of values for B-UNC the propagation constraint determines a
range of values for A-RESULT-UNC, the uncertainty in peg position after insertion.
Later steps in the plan may need to examine this range to see whether it meets
their applicability constraints.

Skeletons for many other actions can be produced similarly. They need not
be used only to model actions in detail. The constraint sets might be very
underconstraining allowing minimal requirements for a large class of actions to be
simultaneously considered. Such skeletons must later be replaced by detailed plans
produced by one of the specialist planning modules.

A plausible small library of skeletons includes:

,' ---. '< '¢ r., '" .*" ": ", " 4.- . . .". ". -... . '. .' . .. '" .." - ;' " .".",. .. .. . .. 0. . . . . .. ..'.' ", .*. " -,',



.... PEG SIAFT -RADIUS

PEGTI?_RADIUS

- - - -HOLE-RADIUS

Figure 4. Bolt-in-hole example.

step modeled by the skeleton is guaranteed to succeed. The propagation constraints
put bounds on the possible physical situations that can be produced by the plan
step given any initial situation satisfying the applicability constraints.

Consider a skeleton to describe insertion of a peg into a hole. For simplicity
we will assume a two-dimensional world, ignoring the details of vertical motions
even in that world. To match a physical situation and plan step there must be a
bolt and a hole. The applicability constraint set consists of

PEG-SHAFT-RADIUS <H OLE-RADIUS,

PEG-TIP-RADIUS - HOLE-RADIUS

<HOLE-POSITION - PEG-POSITION

<HOLE-RADIUS - PEG-TIP-RADIUS,

and
nominal(HOLE-POSITION) = nominal(PEG-POSITION).

The propagation constraint set is simply:

PEG- SHAFT-RADIUS - HOLE-RADIUS

<HOLE-POSITION - PEG-RESULT-POSITION

<HOLE-RADIUS - PEG- SHAFT-,RADIUS

and

nominal(HOL.-POSITION) = nominal(PEG-RESULT-POSITION).

The meta-function nominal refers to the planned value for a physical quantity.

Now consider the physical situation shown in figure 4. The peg is labeled A
and the hole is labeled B. In this example, both the peg and hole have definite
radii. After matching the skeleton to the physical situation, the constraint sets are

- instantiated as; the applicability constraints:

0.2 < 0.25,

18

[. : . .. . ... .. .. . . ... . .. .. .. . . ..-. ..... :. . . . ... .. . . . . . -. .. < . , . . : .. ,



,° 1

now back through fine-motion steps, and perhaps introduce sensing steps to achieve
the pre-conditions necessary for the success of such steps. Failure during constraint
propagation can only be due to a synthesized fine motion having excessively strong '
pre-conditions. In that case planning is backed up to phase 6 for a new fine motion
synthesis.

10. Choose zctual physical locations for the initial location of every object and
for the nominal locations to be used in all intermediate steps of the plan. This is the
detailed layout of the workspace. On failure due to clutter of some work area by
numerous objects and tasks (such as may happen in an area where the manipulator
is most accurate) backup to phase 5 for a new gross layout. The result will be that
new, more difficult, fine motion syntheses will have to be carried out which will
succeed in areas with less accurate manipulator characteristics. On failure due to
the impossibility of keeping a guard volume free for the hand return to phase 8 for
the next available grasp.

11. Plan collision-free motions for the manipulator to achieve each gross change
in location of objects, and to move the manipulator from the release of one object
to the acquisition of the next. If gross-motion planning fails then backup to one of
phases 5 (gross layout), 8 (grasp analysis) or 10 (detailed layout), depending on the
reason for failure. If no path could be found for the payload due to re-orientation
difficulties then variously try tweaking detailed layout in phase 10 (such as making
wider corridors if free space at the failed path segments) or retry the grasp analysis
at phase 8 (such as selecting candidate grasps which place a widely different part of .-.

the object along center of rotation of the last manipulator joint axis). If collisions
with the upperarm or forearm were the main problem then backup to phase 5 for
a new gross layout of the workspace.

2.4. Skeletons

A plan skeleton models a step in a plan in terms of its inputs and outputs.
The idea is that the details of the plan step can be treated as a black box by the
rest of the plan - the rest being affected only by the input/output behavior of an
i, !i ual plan step.

q!:cletons can describe plan steps at different levels of detail. For instance
there might be a skeleton for pickup used early in the planning process. Later in
the process the action might be modeled by a series of four finer plan steps each
instantiated by a skeleton, gross-manipulator motion, fine-manipulator motion,
grasp, and another gross-manipulator motion.

A skeleton is specified by a geometric description of objects and their state in

a world and by two sets of constraints: a set of applicability constraints and a set of
propagation constraints. The skeleton is instantiated by finding a match between
the geometric description and the known world state. Both sets of constraints in
the skeleton are expressed in variables which get instantiated by physical quantity
variables as a by-product of the geometric matching.-

Once instantiated, the feasibility of using such a plan step can be considered.
If the applicability constraints are satisfied by a physical situation, then the plan

17



level of abstraction. It is essentially a branch-and-bound search and later it may
turn out that some bounds were incorrect and more sensing will be necessary in
non-SFM steps than is produced at this point. If a fine-motion skeleton (non-SFM)
causes failure, then the skeleton generator for that motion is re-invoked, a new
skeleton is selected, and this phase is repeated.

5. We now have some constraints on many of the locations. With these we do
a coarse layout, identifying large reasonable areas to place planned locations. For
each SFM step the manipulator error is analyzed over these large areas, which may
be partitioned into subsets having widely different error ball upper bounds. The
partiticns are ordered smallest error bound first, and a list of pairs of error balls
and work areas is formed. These will be used to drive generators for syntheses of
fine-motion strategies. If all possible gross layouts have already been tried then the
planner fails.

6. For each SFM generator look at its first error ball and work area, but do
not remove them from the generator list. If an actual fine-motion synthesis (see
section 3) has not yet been done for this plan step then do it. The result is a
series of sets R from which the synthesized fine motion is guaranteed to succeed
(see section 3). The fine-motion planner also generates a guard volume where the
motion will happen. This volume is the subject of the layout phase (phase 10). If
an SFM generator is already exhausted then backup to phase 5 for a new gross
layout.

7. Using branch-and-bound search on cost estimates propagate constraints
through the plan with the old SFM skeletons replaced by actual fine motions.
Choose the smallest set R (of initial locations) for each fine motion that can be
guaranteed to be reached (i.e. the manipulator error ball fits inside it). If some fine
motion causes plan failure then remove it from its generator and backup to phase
6 for a new synthesis.

8. For each object that must be grasped generate a list of possible grasp
configurations, ordered by criteria such as firmness of grip and accessibility of the
grasp surfaces. A grasp depends on both the initial configuration of the object and
its goal configuration. The interaction of the hand with the fine motion at the end
of any gross motion of the object must also be considered. On failure to find any
grasp at all some new terminal strategy must be necessary, so backup to phase 6
for a new fine-motion synthesis. The actual positions of the grasp might depend on
plan variables. Each grasp produces a guard volume which must be free of obstacles
so that, the hand can fit in a position necessary to achieve the grasp. Note that
the guard volume, appropriately translated and perhaps re-oriented, must be free
both at pick up and at put down. The first grasp in the list of grasps is used in
subsequent planning phases, although they may back up to this phase for a new
grasp.

9. Propagate constraints through the plan moving forward until some pre-
condition constraints are not met, and then backing up to introduce sensing or
otherwise constrain plan variables. This phase is essentially a repeat of phase 4,

except that we have more detailed instantiations of each plan step. Thus we can

U 16

% -h *

-6 ;



* Fail giving a reason and perhaps incorporating a suggestion to change the
given situation.

* Succeed, producing a detailed plan and perhaps a further set of constraints
which should be applied to the given situation in order to refine it further.

Furthermore, each planning module can act as a generator of success/restriction
pairs. As it is re-invoked it generates another solution or, eventually, fails.
The generators define the search space for the constraint-propagation-triggered
backtracking. The restrictions associated with each solution give the backtracking
dependency direction [Stallman and Sussman 77].

2.3. Control structure

The task-level plan specification consists of a series of changes in location for
objects in the workspace. These can be deduced by comparing consecutive world
descriptions. The task planner then proceeds with the following phases:

1. The executive turns each motion into a sequence consisting of

a. Gross manipulator motion

b. Grasp

c. Gross manipulator motion

d. Fine motion

e. Ungrasp.

2. Every one of these plan steps is then instantiated by a skeleton. This is
done by the skeleton matcher. It is guaranteed to find a skeleton which matches.
All gross manipulator motions are matched by the same skeleton as are grasps and
ungrasps. Some fine motions will be matched by specific skeletons (such as "bolt in
hole") and those that are not, are matched by a catch-all skeleton for synthesized
fine motion (SFM). Skeleton matching includes identification of different physical
locations. Each location is associated with the plan step where it first gains physical
ni~a ..ig (e.g., the position of an object on a table first becomes real during the
put- ]own fine motion of the manipulator).

3. A dependency analysis is carried out for locations, that is, it is determined
which physical placements of objects depend on others. The analysis forms multiple
fibers running through a linear arrangement of plan steps - sometimes skipping
over one or more steps.

4. Pre-condition and propagation constraints are propagated through the plan
from one plan step to another. Sometimes the pre-conditions (called applicability
constraints) will not be guaranteed to be satisfied. In that case backing up may be

necessary. The dependency graph is followed. Backing up can introduce sensing.
Skeletons for synthesized fine motion cannot be backed through directly. It is
possible, however, to make certain inferences concerning whether sensing will be
necessary and minimum bounds on costs of sensing. These are used to direct the "."

backtracking Note that this phase does not guarantee a workable plan, even at this

15

-- "- - -•" ~~~~~~~~~.. . .. .. .. . ....-. "......."""'-- " "- ', """"" ''.i..:



The facts about the manipulator mentioned above when applied to the physical
action of moving the box to destination give two constraints on the plan and
uncertainty variable. The reach of the manipulator determines plausible planned
locations for the box, i.e.

5 < BOX-NOM < 20

and the manipulator accuracy determines bounds on the uncertainty in the physical
location of the box as a function of the commanded position for it, i.e.

-0.2 + 0.005 X BOX-NOM < BOX-UNC < 0.2 - 0.005 x BOX-NOM. (4)

Given a suitable inference engine, such as described in [Brooks 81], we can now
make deductions useful for the planning process. For instance, no matter which
legal vilue is chosen for the nominal box position, the uncertainty about where it
will ac,,ually be placed is no bigger than ±0.175. Conversely, if during the planning

process it becomes necessary to ensure that the position of the box is known to
±0.15 chen two possibilities are that the nominal position be constrained by

10 < BOX-NOM

or by introducing a sense operation immediately after placement of the box to see
where it was placed. In the latter case the sensor must be chosen, and the nominal
value of the box position may need to be constrained, so that the box will be within
a region where the sensor error is bounded by ±0.15.

Geometric models, sets of equalities such as (3) and inequalities such as (4)0 combine to form representations of classes of physical situations. Each physical

situation in a class corresponds to one or more points in the satisfying set of all
the inequalities. Such points with different values for plan variables correspond to
different refinements of a plan. Points with identical values for all plan variables, but
different values for uncertainty variables correspond to different physical realizations
of a single planned situation.

2.2. The modules

The task planner consists of a constraint propagator and a skeleton matcher
along with three planning modules (other modules might be added). The planning
modules are a fine-motion planner, a grasp planner, and a gross-motion planner.
The planner also has a library of plan skeletons.

Constraints are propagated between plan steps, providing the propagator with
constraints on layout and enabling it to introduce sensing steps when necessary.

Initially plan steps are modeled by instantiated plan skeletons and later refined
into more detail by the planning modules. Constraint propagation continues as the
plan is refined, propagating the inter-relating constraints back and forth between

plan steps.

Broadly speaking, each planning module is given a class of situations for which
it must produce a detailed plan step. The planning module can:

0 Fail with no reason given.

* ~14I

: .: .'i ., . : :.- ii 'i: i~i : ':: :i' .. ...': 2' " i :i ", : -. . ." - i-. :-" - , . - .. i- :-' -',: i- - , ., . .-- .- .- , --'"..*,,', , .',."-'. ., .



BOX POSITION

Figure 3. Definition of BOX-POSITION

Uncertainty variables represent quantities whose values can never be known,
even at plan execution time; usually they represent the difference between a physical .

quantity and the nominal value which will be chosen for it by the. planner. Thus
they represent uncertainties in the planner's, and plan executor's, knowledge of
the state of the world. Although their values can never be known, bounds on their

magnitudes can either be known a priori (e.g. the manufacturing tolerance of a
workpiece) or can be deduced by reasoning about the motions and sense operations

leading up to the establishment of the appropriate physical quantity.

To illustrate these concepts consider the two-dimensional situation shown
in figure 3. A workpiece is to be placed somewhere on a table by a two-link
manipulator. Suppose the error, e in the x direction made by the manipulator in
trying to place the box with a planned z coordinate pz is given by

-0.2 + 0.005 x p, < e < 0.2- 0.005 X Pz. (1)

Further, suppose that the working range of the manipulator is such that commanded
positions for the box must satisfy

5 < < 20. (2)

We represent the constraints so placed on the physical situation by using three
'-ables:

BOX-POSITION: a physical quantity variable representing the actual physical
value which will be achieved as the z coordinate of where the box will be placed.

BOX-NOM: a plan variable representing the nominal value which will be
chosen during planning and will be passed to the robot controller as the destination
position commanded for the manipulator's motion, while grasping the box.

BOX-UNC: an uncertainty variable representing the error which will be made
by the manipulator in placement of the box.

The above definitions imply

BOX-PDSITION = BOX-NOM + BOX-UNC. (3)

This provides a link from the geometric representation of the world, where
BOX-POSITION is a parameter, to the constraint language which will be used in
reasoning during the planning process.

1313

.:...-.....-......... _........... . ...........-... -sc...'......-....



a complete set of constraints without making some decisions within individu 11 plan
steps. Hence the plan will fail if these decisions are incorrect. The planner therefore
needs to employ a backtracking mechanism where decisions can be made and later
undone in case of failure.

The TWAIN approacl" is first to model all plan steps at a broad level (as
instantiated plan skeletons) and generate all constraints which the steps imply for
every one of their possible refinements. The effects of the constraints are propagated
throughout the complete plan. Each plan step is then refined into further detail.
Again constraints are propagated and, in case of failure, dependency-directed

backtracking occurs.

T he order in which plan steps are refined depends on the type of operation

they describe and their sensitivity to decisions made elsewhere in the plan. For
examole, gross motion planning is done last as it is almost completely insensitive
to any fine-rn'otion strategies, or sensing operations planned elsewhere. On rare
occasions the choice of sensor location or jig layout for some force-directed motion
strategy might block the workspace and make gross motion planning impossible.
On the other hand the position of a workpiece relative to a sensor can affect
whether the sensor can make useful measurements on it. Thus sensing operations
should be planned before the workspace is layed out, so that constraints from those
operations can be taken into account.

2.1. Constraints as a communication mechanism

To achieve our goals, it is neccessary to represent and manipulate geometric
constraints and to distinguish between that which is not yet decided in the
planning process and that which cannot be known even at plan execution time
due to manipulator error, sensor error, and parts tolerances. TWAIN uses a scheme
presented by [Brooks 82].

Constraints are represented by inequalities on explicit expressions over formal

variables. These variables are of three types: physical quantity variables, plan
variables, and uncertainty variables. There are two legal classes of expressions over
these types: expressions which can include both plan and uncertainty variables,
and expressions containing only physical quantities. The two classes of expressions
can appear on opposite sides of an inequality or an equality. The semantics of the
variables are as follows.

Physical quantity variables represent actual physical quantities in the real

world. They are used to label quantities in the geometric world model.

Plan variables represent quantities whose values must be decided by the time

of plan execution. Values for them are chosen as part of the planning process.

Plan variables provide a mechanism for deferring decisions during planning, and
constraints including plan variables provide a representation for reasoning about

'.." the implications of how those decisions will turn out. Often plan variables are used

to represent nominal values for physical quantities.

*1 12

-. * . :-. . , . * . * ..



only with a particular class of geometries. The assumption does not seem to be
true in general. In particular, the presence of additional surfaces in tasks may
generate unexpected contacts, leading to failures. This approach is in contrast to
an approach which derives the strategy directly from consideration of the task
description [Lozano-Pdrez, Mason, and Taylor 83]. In the TWAIN design, both types
of approaches play a role.

The LAMA system was designed at MIT [Lozano-Perez 76, Lozano-P6rez and
Winston 77] as a task-level language, but only partially implemented. LAMA

* - formulated the relationship of task specification, obstacle avoidance, grasping,
skeleton-based strategy synthesis, and error detection within one system. More
recent work at MIT has explored issues in task planning in more detail outside of
the context of any particular system [Brooks 82, 83a, 83b, Brooks and Lozano-P~rez
83, Lozano-P6rez 81, 83, Lozano-Pdrez, Mason, and Taylor 84, Mason 81, 82].

AUTOPASS, at IBM [Lieberman and Wesley 77], defined the syntax and semantics
of a task-level language and an approach to its implementation. A subset of the
most general operation, the PLACE statement, was implemented. The major part of
the implementation effort focused on a method for planning collision-free paths for

o Cartesian robots among polyhedral obstacles [Lozano-P6rez and Wesley 79].

RAPT [Popplestone, Ambler, and Bellos 78] is an implemented system for
transforming symbolic specifications of geometric goals, together with a program
which specifies the directions of the motions but not their length, into a sequence of
end-effector positions. RAPT's emphasis has been primarily on task specification; it
has not dealt yet with obstacle-avoidance, automatic grasping, or sensory operations.

Some robot-level language systems have proposed extensions to allow some task-
level specifications. LM-GEO is an implemented extension to LM [Latombe and Mazer
81] which incorporates symbolic specifications of destinations. The specification
of ROBEX [Weck and Zuhlke 81] includes the ability to plan automatically collision-
free motions and to generate programs that use sensory information available
during execution. A full-blown ROBEX, including these capabilities, has not been
in pmented.

2. Overview of the TWAIN System

The geometry of the world determines how TWAIN refines a given sequence of
object motions into a detailed plan, including sensing steps, of action to be carried
out by a manipulator.

Because of the complex interactions between plan steps, TWAIN must refine
each step with as little commitment as possible to decisions within that refinement
until the effects of decisions made in refining other plan steps are known. One
approach might be to generate all the constraints that each plan step implies for
other steps, and ultimately pick a set of motions and sense operations satisfying
all those constraints. However, because of the number of possibilities in refining a
single step and the inter-dependencies between steps, we cannot in general obtain

U II.



,,..

B -. -- "

CC

A

/C\

A

C

N C

C,

Figure 7. Block-in-corner fine-motion synthesis.

overlap the current velocity range. No pre-image exists for the initial velocity range
because of the possibility of sticking on either A or B. By removing velocities that

may cause sticking on surface A or B from the current range of velocities, we obtain
a velocity range for which a pre-image (C') exists. This pre-irage intersects the
initial range of configurations, so a successful motion has been found.

The example above can be done with a single motion. We did not require
recursive calls to the planner. In general, we have a choice of refining the range

of directions or of using the current pre-image as the goal for a recursive call to
tht .n, e algorithm. This choice at each step defines the search space of motion
sequ, ncs. Another important aspect of the approach is the synthesis of termination
predicates for the motions. These issues are further discussed in [Lozano-Pirez,
Mason, and Taylor 84, Mason 84, Erdmann 84].

.* 4. Grasping

The problem of choosing a grasp point on an object has received significant
attention in the literature JPaul 72, Lozano-Pdrez 76, 81 Wingham 77, Brou 80,
Laugier 81, Mason 82, Laugier and Pertin 83]. The approach to grasping described

Uhere is based on that described in [Lozano-Pirez 81];'a more detailed treatment can
be found there. This approachis also based on the notion of configuration space;

see Appendix.

25



The grasp planner chooses which object surfaces will be grasped and builds a
description of the grasp configurations (on those surfaces) that satisfy the following
constraints:

1. The inside of the fingers are in contact with surfaces of P, the object to
be grasped.

2. There are no collisions between the manipulator hand and any nearby
- -? objects for any possible start configuration of P.

3. There are no collisions between the manipulator hand and any nearby
objects for any possible goal configuration of P.

4. The grasp is stable, i.e., can withstand forces generated during motion
and assembly.

We assume that the manipulator hand is a parallel jaw. We further assume
that the manipulator can be partitioned into an arm and hand. The arm serves
to place the wrist at any point in the workspace; the hand determines the final
configuration of the gripper. This is a common kinematics for manipulators and has

" a number of theoretical and practical advantages. The grasp planner determines
- candidate hand configurations; the gross-motion planner must then pick some hand

configuration that allows finding a collision-free path from the start to the goal.

The choice of grasp surfaces is done by ranking the surfaces by their likelihood
of providing a stable grasp and then choosing the highest ranked surface that leads
to a feasible grasp configuration. A general treatment of stability in grasping is
not yet ava'able, although some promising approaches exist [Hanafusa and Asada
77]. When the object to be grasped is small relative to the manipulator hand, two
simple heuristics provide a fair chance of identifying a stable grasp (see also [Paul
72, Brou 80]). The heuristics are:

1. Ensure at least a minimum contact area of the fingers with the grasp
surfaces. The amount of overlap should depend on object properties such
as weight and surface smoothness.

2. The perpendicular projection of P's center of mass should be near to the
contact area of the fingers and grasp surfaces.

The grasp planner computes feasible grasp configurations for the top ranked
candidate grasp surfaces. Note that because the manipulator configuration will
change while moving P from its start to its goal configuration, we represent the
grasp configurations as the configuration of the hand relative to P. We can impose

,* restrictions that reduce the dimensionality of the set of grasp configurations. One
simple restriction, for parallel jaw hands, is to require that at least one of the
surfaces grasped be planar (the other may be a planar surface, curved surface, edge,
or vertex).

Let Pi be the planar face of P to be grasped, P is the other face (edge or
! .vertex), and F, and F2 be the inside faces of the manipulator's fingers. Under the

" restriction stated above, when P is grasped, either F, or F2 is coplanar with Pi
(without loss of generality assume F is coplanar with Pi). Under these conditions,

26



- ' - --

rnF

Figure 8. Grasp set computations.

the legal (x, y, z) positions of all points on the hand are restricted to be on some
plane parallel to Pi. The hand may rotate about the normal to this plane. Let C be
the set of configurations of the hand for which Pi and F, are coplanar. C is called
the grasp set for Pi.

Not all the configurations in G are feasible grasp configurations, either because

l ngers are not in contact with the grasp surfaces or because the coresponding
m nirulator configuration causes a collision (at the start or at the goal). The
constraint that the fingers touch the grasp surfaces can be readily enforced by
restricting the grasp set to be the intersection of those hand configurations for
which F1 overlaps Pi and those for which F2 overlaps Pj. This intersection set can
be computed explicitly in low-dimensional C-space [Lozano-Prez 81, 83, Brooks

A, and Lozano-Perez 83). Similarly, those hand configurations (defined relative to P)
that cause collisions with objects at the start or at the goal can be computed. The
grasp set C can then be intersected with their complement to obtain the set of
feasible grasp configurations.

* Figure 8 shows an example of the feasible grasp computation: (a) the pick-up
and put-down orientations of the hand, (b) C-space obstacles at pick up (the shaded
region is the accesible part of the grasp set), (c) C-space obstacles at put down, (d)
put down obstacles constraining the grasp set further.

27

+3 -cJ -'' e._-v'. 'J''- ".: + '_ , -' - +' -- '. .- ,.+."..- .. . . .. .. . .



If P is free to move during the grasping operation and its initial position is
not known to high accuracy, then the grasp planner must take into consideration
the possible motions during planning. This is quite difficult in general; see [Mason
82].

Many grippers currently under development, such as Salisbury's three-fingered
hand and the Utah-MIT hand, are much more complex than the parallel jaw gripper
we have been considering. The planning method above, although still relevant,
becomes vastly more complex for these multi-fingered hands. This is an area where
more research is desperately needed.

5. Gross Motion

After a trickle of early work on collision-free gross-motion planning, there has
been a avalanche of new ideas and developments recently.

The earliest reasonably general algorithms for manipulators were for the
Stanford arm (it has one sliding and five revolute joints). One was implemented
[Udupa 77] and the other partially implemented [Widdoes 74]. Both relied on
approximations for the payload, limited wrist action, and tesselation of joint space
to describe forbidden and free regions of real space. The problem with tesselation
schemes is that to get adequate motion control a multi-dimensional space must be

* - finely tesselated.

Lozano-Perez [81] presented an implemented algorithm for Cartesian manipu-
lators. Cartesian manipulators have three sliding joints whose axes are orthogonal
and thus they can be used as the axes of space representation. Lozano-P'rez's
algorithm used configuration space for the Cartesian portion of the manipulator
(where the natural Euclidean axes of the configuration space correspond exactly to
the joints of the manipulator) and subdivided ranges of angles for the hand, within
each of which a bounding volume for the hand and payload is used.

Schwartz and Sharir [821 have shown that the problem is polynomial in the
number of obstacle surfaces for a manipulator with a fixed number of joints. If n is
the number of obstacle surfaces, the running time of their algorithm is 0(n 64 ) for a
six degree-of-freedom manipulator. It is, therefore, primarily of theoretical interest
and not meant to be implemented.

Brooks and Lozano-P6rez [83] have developed a practical and implemented
algorithm for polygonal obstacle avoidance which produces paths which require
arbitrarily difficult rotations up to a preset resolution.

Brooks [83a] developed a new representation for two-dimensional free space
as overlapping freeways. This has led [Brooks 83b] to the development and
implementation of a gross motion algorithm for pick and place operations for a
manipulator with revolute joints.

The key idea is that free space should be explicitly represented in such terms
that it is easy to determine the collision-free motion segments that can be made

28

......................................................



Poole....

/ \

;&'I ~ALOAD

I. -, 6

Figure 9. Unimation PUMA manipulator.

by the manipulator and its payload. Individual legal motion segments are linked to

form a complete motion for the manipulator.

See figure 9 for a diagram of the PUMA. Brooks' algorithm decomposes the
problem by spending two degrees of freedom of the manipulator to partially decouple
the payload and the upperarm of the manipulator. In the six degree-of-freedom
PUMA it keeps joint 4 fixed (there is no joint 4 for the 5 degree-of-freedom PUMA)
and uses joint 5 to compensate for the payload orientation for the motions of the
upper and forearms. Joint 6 is free to re-orient the payload about its vertical axis,
but such re-orientation does not require motion of either the upper or the forearm
- it is completely decoupled. This is only two-dimensional rotation. There is still
coupling of translations of the payload and the motion of the upper links of the
arm. A major new contribution of the algorithm is that motion of the components
can at first be analyzed separately and then, later, constraints are propagated
beN en the solutions to account for the remaining coupling.

rhe algorithm finds paths where the payload is moved in straight lines, either
horizontal or vertical, and is only re-oriented by rotations about the vertical axis
of the world coordinate system. Thus only 4 degrees of freedom are considered for
the PUMA.

.0 The payload and the hand are merged geometrically, and the payload is
considered to be a prism, with convex cross section. The payload can rotate about
the vertical, as joint 6 rotates.

Obstacles in the work space are of two types: those supported from below and
those hanging from above. Both are prisms with convex cross sections. Non-convex
obstacles can be modeled by overlapping prisms. Prisms can be supported from ..

below if they rest on the workspace table or on one another as long as they are
fully supported. Thus no point in free space ever has a bottom supported obstacle

29

'- ~ . .- - ..- .- .- " - .- .- .- " • . "..-- .° " ., "" " .." . •• -" . . ", ." ." .• " .' ','= '" '- ." % .- .- t
"

k'- % ,'- %..
°-

" ' % .6%



above it. Such obstacle descriptions have been extracted from depth measurements
from a stereo pair of overhead catieras. Tie algorithm has generated collision tree

paths [rom that data.

Similar pre deflined obstacles may also hang from above intruding into the
workspace of the upperarm arid forearm. Obstacles are precluded from a cylinder
surrounding the manipulator base.

The class of mot ions allowed suffice for many assembly operations, and, with
as yet unknown algorithms for re orienting the payload without major arm motion,
the algorithm could provide gross motion planning for all but the most difficult
realistic problems.

6. Conclusions

In this proposal we have outlined an architecture for a new task-level system,
which we call TWAIN. Our goal has been to define a unified framework for existing

and future research on task planning. We have summarized approaches to several of
the key problems in task planning: fine motion synthesis, grasping, and gross motion
planning. These areas are relatively mature. Some other areas such as automatic
parts layout, feeding, arid fixturing have received significantly less attention. We
prcpo,3e to construct a prototypc implemncntation, of TWAIN during the next two
years w,,here the focus will be on the interaction between the modules described

10o here.

..



J.

6. References

Binford, T. 0. (1979). The AL Language for Intelligent Robots, IRIA Seminar
on Languages and Methods of Programming Industrial Robots, Rocquencourt,
France, June.

Brooks, R. A. (1981). Symbolic Reasoning Among S-D Models and 2-D Images,
Artificial Intelligence (17):285-348.

Brooks, R. A. (1982). Symbolic Error Analysis and Robot Planning, International
Journal of Robotics Research, vol 1, no. 4, Dec., 29-68.

Brooks, R. A. (1983a). Solving the Find-Path Problem by Good Representation
of Free Space, IEEE Trans. on Systems, Man and Cybernetics (SMC-13):190-197.

Brooks, R. A. (1983b). Planning Collision Free Motions for Pick and Place
Operations, First International Symposium on Robotics Research, Bretton Woods,
New Htampshire, August.

Brooks, R. A. and T. Lozano-P~rez (1983). A Subdivision Algorithm In
Configuration Space For Findpath With Rotation, IJCAI-83, Karlsruhe, Germany.

Brou, P. (1980). Implementation of High-Level Commands for Robots, M. S.
thesis, MIT Dept. of Electrical Engineering and Computer Science, December.

Dufay, B. and J. C. Latombe (1983). An Approach to Automatic Robot
Programming Based on Inductive Learning, First International Symposium on
Robotics Research, Bretton Woods, August.

Erdmann, M. A. (1984). On Motion Planning with Uncertainty, MIT Artificial
Intelligence Laboratory, Technical Report 810.

Feldman, J., et al. (1971). The Stanford Hand-Eye Project, First IJCAI, London,
England, September.

Finkel, R., Taylor, R., Bolles, R., Paul, R., and Feldman, J. (1974). AL, A
programming system for automation, Stanford Artificial Intelligence Laboratory,
ATMf-177, November.

-irossman, D. D. and Taylor, R. H. (1978). Interactive Generation of Object
Moaels with a Manipulator, IEEE Transactions on Systems, Man, and Cybernetics
(SMC-8):667-679.

Hanafusa, H., and Asada, H. (1977). A robotic hand with elastic fingers and

its application to assembly process, IFAC Symposium on Information and Control
Problems in Manufacturing Technology, Tokyo.

Latombe, J. C. and Mazer, E. (1981). LM: a High-Level Language for Controlling
Assembly Robots, Eleventh International Symposium on Industrial Robots,Tokyo,
Japan, October.

Laugier, C. (1981). A program for automatic grasping of objects with a robot arm,
Eleventh International Symposium on Industrial Robots, Tokyo, Japan, October.

Laugier, C. and J. Pertin (1983). Automatic Grasping: A Case Study in
Accessibility Analysis, Laboratoire IMAG, Report 342, January.

31

-..:..-..'-.-.. -.. --;..-.. , ..-...-...--..-........-......- ...... .... ........ .. ... .............



Lieberman, L.I., and Wesley, M. A. (1977). AUTOPASS: an automatic
programming system for computer controlled mechanical assembly, IBM Journal of
Research Development (21):321-333.

Lozano-Perez, T. (1976). The design of a mechanical assembly system, MIT
Artificial Intelligence Laboratory, TR 397, December.

Lozano-P6rez, T. (1981). Automatic Planning of Manipulator Transfer Movements,
IEEE Trans. on Systems, Man and Cybernetics (SMC-11):681-698.

Lozano-P~rez, T. (1983a). Spatial Planning: A Configuration Space Approach,
IEEE Trans. on Computers (C-32):108-120.

Lozano-P6rez, T., and Wesley, M. A. (1979). An algorithm for planning
collision-free paths among polyhedral obstacles, Communications of the ACM
(22):560-570.

Lozano-Pdrez, T., and Winston, P. It. (1977). LAMA: a language for automatic
mechanical assembly, Fifth International Joint Conference on Artificial Intelligence,
Cambridge, Mass., August.

Lozano-P6rez, T., Mason, M. T., and Taylor, R. H. (1984). Automatic Synthesis
of Fine-Motion Strategies for Robots, Int. J. of Robotics Research, vol 3, no. 1.

Mason, M.T. (1981). Compliance and force control for computer controlled
manipulators, IEEE Transactions on Systems, Man and Cybernetics (SMC-11):418-
432.

Mason, M. T. (1982). Manipulator Grasping and Pushing Operations, MIT
Artificial Intelligence Laboratory, Technical Report 690.

Mason, M. T. (1984). Automatic Planning of Fine Motions: Correctness and
Completeness, 1984 IEEE International Conference on Robotics, Atlanta Ga..

Paul, R. P. (1972). Modelling, trajectory calculation, and servoing of a controlled
arm, Stanford Artificial Intelligence Laboratory, AIM 177, November.

Popplestone, R.J., Ambler, A. P., and Bellos, 1. (1978). RAPT, A language for
describing assemblies, Industrial Robot (5):131-137.

Schwartz, J. T. and M. Sharir (1982). On the Piano Movers Problem II: General
Properties for Computing Topological Properties of Real Algebraic Manifolds,
Department of Computer Science, Courant Institute of Mathematical Sciences,
NYU, Report 41, February.

Stallnan, R. M. and G. J. Sussman (1977). Forwrad Reasoning and Dependency-
Directed Backtracking in a System for Computer-Aided Circuit Analysis, Artificial
Intelligence (9):135-196.

Taylor, R. If. (1976). The Synthesis of Manipulator Control Programs from
Task-level Specifications, Stanford Artificial Intelligence Laboratory, AIM-282, July.

Udupa, S. M. (1977). Collision Detection and Avoidance in Computer Controlled
Manipulators, Proceedings of IJCAI-5, MIT, Cambridge, Ma., Aug. 1977, 737-748.

32



Weck, M. and Zuhlke, D. (1981). Fundamentals for the Development of a
High-Level Programming Language for Numerically Controlled Industrial Robots,
AUTOFACT West, Dearborn, Michigan.

Whitney, D.E. (1976). Force feedback control of manipulator fine motions, J.
Dynamic Systems, Measurement, Control, 91-97, June.

Widdoes, L. C. (1974). Obstacle avoidance., A heuristic collision avoider for the
Stanford robot arm.Unpublished memo, Stanford Artificial Intelligence Laboratory.

Wingham, M. (1977). Planning how to grasp objects in a cluttered environment,
M. Ph. thesis, Edinburgh University.

:=. 33

Io

r = . -- -. . . - . .-, ..., .-.: .- .-. . ... .... . . : . . -. .y . . . .. .. .. .. -. .: . - .. . . . . . .. . : -.-

p- ,, : ' .. -z --,'f .', , . - :,; ' ' : , ; - ' , ' - " , , , . = ' _ _ -'- :- : , , " _



Figure 10. Geometric conditions giving rise to C-surfaces.

Appendix: Configuration Space

A configuration of an object is the set of parameters needed to specify
completely the position of all points of the object. The configuration of a rigid
two-dimension" ibject, for example, can be specified by two displacements and an
angle, that of a rigid three-dimensional object by three displacements and three
angles, and that of a robot arm by its joint angles. For concreteness, we will be
dealing exclusively with Cartesian configurations, e.g., (z, y, B) for objects in the
planec, and not joint angle configurations. The space of all possible configurations for
an object is known as the configuration space (C-space) of that object JLozano-P~rez
81, 83]. An object A is represented as a point in its C-space; the coordinates of
that point are the configuration parameters of A.

Stationary obstacles in the environment of a moving object A can be mapped
into the configuration space of A. The resulting C-space obstacles are those
configurations of A which would lead to collisions between A and the obstacles.
Configurations on the surface of the C-space obstacle due to B are those where some
surface of A is just tpuching a surface of B. If A and B are both three-dimensional
polyhedra, the surfaces of the C-space obstacle for B arise from each of the
feasible contacts between the vertices, edges, and faces of A and B (see figure 10)
ILozano-Pirez 83]. Therefore, each face of a C-space obstacle represents a particular
type of geometric constraint on A. A range of positions (and orientations) of A can
be represented as a volume in the C-space of A and a motion of A is a curve in the
C-space.

As an illustration of the use of C-space surfaces, consider the familiar two-
dimensional peg-in-hole problem from figure 6. We can construct a three-dimensional
C-space of (z, y, 0) configurations of the peg. In this space, the hole defines an
obstacle (see figure 11(a)). Note that although the resulting surfaces are curved,
for each value of 0 the (z, y) cross section of the C-space surfaces is polygonal.
The surfaces represent one-point contacts and the edges at the intersections of

-. .surfaces represent two-point contacts. Line-line contacts also give rise to edges at
the intersections of one-point contact surfaces. Figure 11(b) shows cross sections
for a peg and chamfered hole.

34

I l, tdi llld llilln~llllll llll d -l l ll l .. ... ... . .. - ' . m . . . .K-



-

'\\ ' ___________

VA

' " 7.-"___ ___

X

Figare 11. Cross sections of peg-in-hole C-surfaces: (a) no chamfer (b) chamfer.

The C-space representation can be extended to more general kinematic
situations. In general, motion subject to geometric and kinematic constraints can
be defined as collections of equalities and inequalities that must hold among the
parameters that determine the configurations of the robot and the objects in the
task. These inequalities represent C-surfaces IMason 81). Take the constraint that

a robot hand remain in contact with a crank handle as it rotates. The constraint
relating the position of the hand, (z, y), to the position of the crank (a constant) I
and its current angle, a, is a curve (one-dimensional surface) in the configuration
*pace of the task, i.e., the (:Y, c) space.

35%



PF0 1 ' ) A I k' \ ,- IINMFNT F XPFlNSC

FILMED

10-85

DTIC
b.1 ~ . N. '' I. . . -


